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The stability of longitudinal rolls in an inclined convection layer is investigated for 
various angles of inclination. Three types of instability are responsible for the tran- 
sition from longitudinal rolls to  three-dimensional forms of convection in different 
regimes of the parameter space. The role of the wavy instability is emphasized since 
it does not correspond to a transition in the case of a horizontal layer. The analysis 
emphasizes the cases of air andwater as convective media. Comparisonof the theoretical 
results with experimental data indicates that  the stability analysis based on infini- 
tesimal disturbances correctly describes the observed instabilities. 

1. Introduction 
I n  recent years convection in a fluid layer heated from below has received con- 

siderable attention as a hydrodynamic system which exhibits the phenomenon of 
turbulence with particular simplicity. Because of the relative ease with which the 
onset of convection and higher transitions can be observed experimentally as well as 
investigated theoretically convection has become a prime example for the under- 
standing of the transition to  turbulence in fluid systems. 

Most of the attention has been focused on the case of a horizontal convection layer, 
which has the property that the physical conditions in the horizontal direction are 
isotropic and homogeneous at  least in t,he theoretical idealization of a layer of infinite 
extent. The onset of convection in this case is determined by a single parameter, the 
Rayleigh number, which describes the ratio between the energy released by the 
buoyancy force and the energy dissipated by viscous friction and thermal conduction. 
Even though the mechanism of the release of thermal energy driving convection is 
basically simple, a rich variety of phenomena is displayed by finite amplitude con- 
vective motions. This variety stems primarily from the dependence of the motions on 
the Prandtl number, which represents the second non-dimensional parameter of the 
problem. At high Prandtl numbers the nonlinear terms in the equation of motion are 
of minor importance and the properties of convection are dominated by the thermal 
boundary layers. The instability of the thermal boundary layers causes a transition 
to bimodal convection, which is well understood from both the theoretical (Busse 
1967a) and the experimental (Krishnamurti 1970a; Busse & Whitehead 197 1 )  points 
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of view. At Prandtl numbers of order unity and lower the momentum terms cause a 
transition from convection rolls to time-dependent oscillatory convection. While the 
Rayleigh number for the transition to bimodal convection depends only slightly on 
the Prandtl number, a strong dependence is exhibited by the Rayleigh number at 
which the onset of oscillations occurs. Experimental observations of the oscillatory 
instability (Willis & Deardofl 1970; Krishnamurti 1970b, 1974) have preceded the 
theoretical investigations (Busse 1972; Clever & Busse 1974), which are complicated 
by the property that vertical vorticity associated with the oscillations enters the 
problem as an additional variable. Other instabilities, such as the zigzag instability, 
have been predicted (Busse 1967a) and observed (Busse & Whitehead 1971) in the case 
where the convection-roll wavelength differs sufficiently from its optimal value. In 
the case of a horizontal layer the zigzag instability, as well as the Eckhaus instability 
(Busse 1971), does not correspond to a transition to a new form of convection. 

In this paper we intend to extend the picture described above to the case of con- 
vection in an inclined layer. This case differs considerably from the horizontal case 
because of the direction distinguished by the downslope component of gravity. The 
characteristic degeneracy of the eigenvalue problem for the onset of convection in a 
horizontal layer is removed and a single form of convection is realized. Except in the 
case of low Prandtl number or nearly vertical inclination of the layer, when a trans- 
verse mode is preferred, convection assumes the form of longitudinal rolls aligned 
with the direction of inclination. The uniqueness of the two-dimensional convection 
solution at  the critical Rayleigh number contrasts with the random orientation of 
convection rolls found in a horizontal layer. The randomness represents a typical 
property of turbulence in a case when motions are still steady. From this point of view 
the transition to a three-dimensional form of convection in the inclined layer is an 
even more important step in the development towards turbulence than in the hori- 
zontal layer. We shall consider this problem by analysing the dependence of the 
various instabilities of the longitudinal convection rolls on both the Prandtl number 
and the angle of inclination. 

The interest in a non-isotropic case of convection in contrast to the horizontally 
isotropic convection layer is not the only motivation for the present analysis. An 
inclined layer with different temperatures prescribed on the boundaries exhibits a 
plane parallel shear flow in the absence of convection. The interaction of convection 
and shear flow, however, is an important phenomenon in meteorological and other 
geophysical applications. Convection in the presence of a mean shear is not easily 
realized in the laboratory. For this reason the case of an inclined convection layer has 
received particular attention from experimentalists, even though the problem differs 
in some respects from the case of a horizontal layer with superimposed shear. The 
availability of detailed data (especially those obtained by Hart 1971a, b) on higher 
transitions of convection flows in an inclined layer has provided the challenge for the 
work described in this paper. Another case of convection in the presence of shear 
flow is provided by the thermal boundary layer on an inclined heated plate in an 
infinite fluid. Experimental realizations of this case (Sparrow & Husar 1969) show 
phenomena similar to those observed by Hart. 

The linear stability analysis of an unstably stratified layer with a mean shear flow 
shows that either longitudinal or transverse rolls or travelling waves set in depending 
on the magnitude of the shear and the Prandtl number. While the shear flow does not 
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FIGURE 1. Co-ordinate system for the inclined layer. 

influence the onset of longitudinal rolls it may have a destabilizing or a stabilizing 
effect on the onset of the transverse mode. Although the present paper investigates 
only the finite amplitude properties and stability characteristics of the longitudinal 
convection rolls, we expect that the destabilizing influence of the shear flow will become 
noticeable for certain parts of the parameter range and that the transverse mode will 
reappear in the form of an instability. This aspect of the problem of the interaction of 
convection with shear will be discussed in detail in $ 7 .  

The paper starts with the formulation of the basic equations of the problem in $ 2. 
In  $ 3 the steady solution in the form of finite amplitude longitudinal convection rolls 
is discussed. The solution is identical to the corresponding solution in a plane layer 
except, for an additional component of the velocity field in the direction of the mean 
flow, which can be calculated separately, as was shown by Clever (1973). In $ 4  the 
stability analysis is formulated. The wavy instability (standing waves) which pre- 
dominates in experimental studies is investigated in $5.  A competitor of the wavy 
instability at  low angles of inclination is the oscillatory instability (travelling waves), 
which is discussed in $ 6. Finally, the problem of the transverse instability is analysed 
in $ 7 .  

2. Basic equations 
We consider a fluid layer of infinite extent inclined at  an angle y with respect to the 

horizontal. Constant temperatures TI and T, (T, > TI)  are prescribed at  the upper and 
lower boundaries of the layer. For the non-dimensional description of the problem we 
shall use the thickness d of the layer as the length scale, d2/K, with K denoting the 
thermal diffusivity, as the time scale and (T2 - T,)/R as the temperature scale. Accord- 
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ingly, the Navier-Stokes equations for the velocity vector u and the heat equation 
for the temperature 0 are 

V2u+@(k+itany)-Vn = P-l(au/at+u.Vu), ( 2 . 1 ~ )  

v . u  = 0) ( 2 . l b )  

VW+Rk.u = a@/at+u.Vu. ( 2 . l c )  

The unit vector k is normal to the layer and the unit vector i is parallel to it and in 
the direction of inclination, as shown in figure 1. The physical properties of the system 
are described by two non-dimensional parameters, namely the Rayleigh number R 
and the Prandtl number P: 

R = pg cos y ( T 2  - TI)  d 3 / v ~ ,  P = V / K ,  (2 .2 )  

where v is the kinematic viscosity, g the acceleration due to gravity and ,8 the co- 
efficient of expansion. We have assumed the Boussinesq approximation, in which the 
density is regarded as a constant except in the gravity term. All terms which can be 
expressed as gradients are combined in the ‘pressure’ gradient term Vn.  

The basic solution of (2 .1 )  consists of a temperature distribution governed by 
conduction only and a plane parallel flow in the direction of inclination. Using a 
Cartesian system of co-ordinates with the origin at  the centre of the layer and the x 
and z co-ordinates in the directions of i and k, we find the basic solution 

( 2 . 3 ~ )  

U, = iRtanyx&(z3-$z) = U,i. (2 .3b )  

In deriving this solution we have used the condition that the velocity vector vanishes 
at the rigid boundaries. In  order to describe the secondary solution corresponding to 
the convective state of the system we write 

u = U + V  = U,+U,+v, 0 = 0,+6, 

where U, denotes the purely z-dependent modification of the basic mean flow profile 
( 2 . 3 b )  owing to the onset of convection. The fluctuating component v of the velocity 
field is defined by the property that its x, y average, indicated by an overbar,vanishes: 

v = u-u = 0. 

It is convenient to eliminate the equation of continuity (2.1 b )  by introducing the 
general representation for the solenoidal vector field v: 

- -  

v = b$+r$, (2.4) 

where 

After operating with k .  V x (V x . . .) and k .  V x on (2 .1  a )  and subtracting the equation 
satisfied by 0, from (2.1 c )  we obtain the following equations for the scalar variables 
#, $ and 8 :  

S# E V x (V x k#), E$ = V x kll.. 

V4A2$+tanya~,8-A28 = P - l ( b . [ ( S ~ + ~ l l . ) . V ( b ~ + r $ ) ]  

+ (ua, + a,) V ~ A ,  4 - a:z ua, $1, ( 2 . 5 ~ )  
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V2A, $ +tan ya, 8 = P-l(t,[(S$ + E$) . V(S$ + €@)I 
+ (Ua, + at )  A2 $ - a, ua, A2 $ 1 9  (2.5b) 

(2 .5~)  

Anticipating that U, is directed solely in the x direction because of the symmetry of 
the problem we have used U = i U .  The symbol A2 denotes the Laplacian with respect 
to the x, y plane, i.e. 

The boundary conditions for q5, $ and B are 

v2e - RA, 4 = (84 +€$I. ve + (ua, + at )  8. 

A~ = a:,+ a;,. 

$ = a , $ = $ = e = o  at z=+&. (2.6) 

The goal of the following analysis is first to obtain steady solutions of (2.5) and then 
to investigate the stability properties of the steady solutions. In  experiments two 
different kinds of steady solution of (2.5) are observed: longitudinal rolls, which are 
independent of the x co-ordinate, and transverse rolls, which do not exhibit a y 
dependence. In both cases (2.5a, c )  can be solved independently of (2.5b). For trans- 
verse rolls $ vanishes. For longitudinal rolls a non-vanishing @ is obtained from 
(2 .5b ) .  In  fact, it is because of the additional velocity component in the x direction 
that the longitudinal-roll solution differs from the corresponding solution in a hori- 
zontal layer. We shall discuss this point in more detail in the following section. The 
transverse-roll solution will not be considered in this paper since it occurs only for 
large values of the parameter P-’tan y ,  or for angles of inclination at which the 
heating is from above. 

3. Longitudinal convection rolls 

simplified considerably to (see also Hart 1973) 
For steady longitudinal rolls the x and t dependence vanishes and (2.5) can be 

a,(v4$ - e) = p-ya;, v2$ - a;, $a;, vz$}, ( 3 . 1 ~ )  

(3.lb) 

v2e - Ra;, $ = a;, $au e - a;, $az e. (3 .1~)  

In  order to solve these equations the function U must be determined. While U, is 
given by(2.3b), U,isobtainedfrornthe yaverageof(2.la): 

a,(V2a, $ +tan ye) = P-lau{a;, $a;, @ - a$, #aus $ - a, ua;, $1, 

where the angular brackets denote the average over the entire fluid layer. 
It is obvious from (3.la, b )  that $ and B can be determined independently of $. 

Since y does not appear in the problem posed by (3.1 a, c )  and the boundary conditions 
(2.6), the solution for q5 and 8 is identical to the solution for convection rolls in a 
horizontal layer. Hence the analysis of convection rolls described in Clever & Busse 
(1974, henceforth referred to as I)  can be applied to the present problem. For the 
problem of the stability of this solution the presence of a normal component of vorticity 
$ causes a considerable difference. This will become apparent in a later section of this 
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paper. The equivalence of longitudinal rolls in an inclined layer and rolls in a horizontal 
layer has not always been appreciated in the literature. We refer to the discussion by 
Clever (1  973) .  

Even after ( 2 . 3 6 )  and ( 3 . l d )  have been inserted for U, ( 3 . l b )  remains a linear 
inhomogeneous equation for $ with the special property that both inhomogeneous 
terms are proportional to tan y .  Hence we need to obtain a solution $o for only one 
particular angle. For convenience we choose the case y = in. The general solution 
for arbitrary angles is then $ = $o tan y.  

In order to solve (3.1 b )  numerically we follow the analysis in I. We expand 
of a double series 

(3 .2 )  

in terms 

(3 .3 )  

where the ranges of the summations over h and v are - co 6 h 6 + co and 1 6 v 6 co. 

(3 .4 )  
Here the functions 

satisfy the boundary conditions (2 .6 )  for $. Since the solution (4, 0) derived in I is 
symmetric in y, $ must be antisymmetric, i.e. 

$0 = 2 C A v e i A a y f v ( z )  c cAv$Av,  
A,  V A,  v 

f,(z) = sin vn(z + 4) 

CAv = - C - A v .  ( 3 .5 )  

I n  addition, we can restrict our attention to coefficients cAu with h + v  even since $ 
and 0 have the same symmetry and since U is antisymmetric in z. For numerical 
purposes the infinite series (3 .3 )  must be approximated by a truncated series. Following 
the procedure in I the truncated series is obtained by neglecting all modes with 

Jhl + v  > N .  (3 .6 )  

The same value of N will be used as for the solution for 4 and 0 obtained in I. 

obtain the following set of linear equations for the coefficients cAv: 
By multiplying (3 .1  b )  by sin m ( z +  4) fp(z) and averaging over the fluid layer we 

I!$Av cAv + I K p p n  b pn + P-lI$!Avpn apn cAv + RP-lI:YIv ah, = 0, (3.7 

where the summation convention has been assumed. 
In  addition to ( 3 . 3 )  we have substituted into (3.1 b )  the expansions 

(3.8 

which were introduced in I. The functions g,(z) satisfy the boundary conditions for 
$ and are defined by 

g,(z) = 

where the values ofPv and A, are the positive roots of 

coth $/3 - cot i P =  0 

and tanh $A + tan :A = 0. 

(3.1 Oa) 

(3 .10b)  
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FIGURE 2. The horizontally averaged wall shear stress S = 8, U(z  = $)/a, U,(z = 3). 

Chandrasekhar introduced the functions (3.9) into the analysis of convection problems 
and has computed the roots of (3.10) (Chandrasekhar 1961, p. 635). 

We have used superscripts starting with 7 for the matrices in (3.7) in continuation 
of the analogous analysis in I .  The matrices I(n) with n 2 7 are defined by 

IL2hV < $ K p  $b>, I A 7 A V  ( ~ K p  'Av>, 

The solution of the system (3.7) of linear inhomogeneous algebraic equations for the 
coefficients cAv is obtained numerically by ordinary matrix inversion techniques. The 
solution for arbitrary angles y then follows according to relation (3.2). 

Once $ has been determined the modification of the mean shear profile can be 
computed. The results are shown in figures 2-4. There are two major effects represented 
in (3.1 d ) :  the temperature effect and the Reynolds-stress effect, which is dependent 
on the Prandtl number. Since the basic shear flow Uo originates from the torque caused 
by the temperature gradient, the modification U, tends to reduce the shear Aow as the 
growing amplitude of convection establishes a nearly isothermal mean temperature 
in the interior of the layer. Although thermal boundary layers are formed their torque 
decreases with an increase in the Nusselt number. The decrease in the stress acting on 
the bounda.ry is so pronounced that the stress actually decreases with increasing 
Rayleigh number in the case of air as is evident in figure 2. 

The action of the Reynolds stress is more difficult to interpret. As is apparent from 
figures 3 and 4, the Reynolds stress tends to reverse the shear in the interior of the 
layer. This is similar to the effect observed by Lipps (1971), who investigated longi- 
tudinal convection rolls in the presence of a constant vertical shear applied to the 
layer. I n  contrast to his case, not only does the Reynolds stress here decrease the shear 
in the interior of the layer to zero but an actual reversal originating from the x com- 
ponent of the fluctuating part of the buoyancy force occurs which is not present in the 
case treated by Lipps. 
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FIGURE 3. The shear-flow velocity profiles U (solid lines) and U, (dashed line) for an air 
( P  = 0.71) layer for various Rayleigh numbers (given on curves). 
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FIUURE 4. The shear-flow velocity profiles U (solid lines) and U, (dashed line) for 
a water ( P  = 7.0) layer for various Rayleigh numbers (given on curves). 
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4. Stability analysis 
In  order to investigate the stability of the longitudinal-roll solution we superimpose 

infinitesimal disturbances. Since the linear system of homogeneous equations for the 
disturbance variables $ ,a  and $ does not contain an explicit time dependence we may 
assume an exponential time dependence exp {at} for the disturbances. The growth 
rate a thus becomes the eigenvalue of the linear homogeneous system of equations. 
If there exists a disturbance for which u has a positive real part the roll solution is 
uastable. If the eigenvalues of all possible disturbances have vanishing or negative 
real parts, the roll solution is stable, at least as far as infinitesimal disturbances are 
concerned. 

V4A2 $ +tan yarz 8- AzO = P-l{S. [(a$ + E$). V(S$)] + [(S$. V )  (66 + E$)] 

The equations for the disturbances $, $ and 8 are 

+ a, V2A2 $} + P-'{S. [(a# + €$) . V(ejlf) 

+ ( E j l f .  V) (64 + 4 1  + va, V2A, 6) - @z* vt 8, A2 $}, (4.1 a )  

V2Az $+ tan ya, 61 = P - ~ { E .  [(@ + E$). V(S$) + (6$ .0)  (66 + E$)] 

+ 8, Az $} + P - ~ { E .  [(@ + $1. V ( ~ j l f )  

+ ( E j l f W S $ + & l +  ~ a , A z $ - ( ~ z  WPyAz$% (4 . lb)  

+ ayz $8, 0- A, $az O+ a, a} +{(a, $) a, a+ ua, 01. (4.1 c )  

V2#-RAz$ = {(ayz$ -~,$)a,e-(Az$)aze 

In  order to perform a complete stability analysis disturbances of arbitrary three- 
dimensional spatial dependence must be considered. Since the steady longitudinal-roll 
solution is periodic in the y direction and does not depend on the x co-ordinate, 
disturbances of the form 

$ = ( c 6," eihay g,,(z)) exp {i(dy + bx) + at}, ( 4 . 2 ~ )  
A,  y 

O = (x eiAaVf, , (z))  exp {i(dy + bx) + at}, (4.2b) 
A,  y 

$ = ( c F~,, e i A a y f , ( z ) )  exp {i(dy + bx) + at} ( 4 . 2 ~ )  

can be assumed without loss of generality. Since a is identical to the wavenumber 
used in the representation of the steady solution given in (3.3) and (3.8),  expressions 
(4.2) exhibit the same periodicity in the y direction as does the roll solution, except 
for the exponential factor exp {idy}. After substituting (4.2) into (4.1) a set of algebraic 
equations is obtained by using the same procedure as was used in the case of the 
steady equations : 

A,  IJ 

1'11) K ~ A V  6 Av + ~ i l $ ,  6A,, + P - ~ { I ~ ~ ~ ,  GA,, + 1:;~1,, cA,,} + ~ - 1 { 1 ( 1 6 )  K@V /\U + ~ 7 )  K/CA\yc",%hy} 

+ RP-l t anyI~ .~ , i i , ,+  tan yI$i,,6A,, = uP-lI(15) rpAu ii Av,  

+ ~iy j , ,  F~,,} + tan y$,,:lY 6,, = a~-11$2,, F,,, 

+ I $ ~ ~ v 6 A v +  RtanyILF]u6A, = (~I$~j,,6,,~. 

(4.3a) 

I(21' K p h V  c" AV + P - l { I ~ ~ i , ,  a",,, +IL;:i,, EAv} + P~'{I!$,EAU + I i , i y  FA,,} + RP-l tan ~{I$'i,,6A,, 

(4.3 b )  

I$iv &Av + RI$i,, 6A,, + Ii;:i,, d,, + I ~ ~ ~ i , ,  c"A,, + I ~ ~ ~ ,  &A,, 

( 4 . 3 ~ )  
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The matrices I(ij)follow from the corresponding terms in (4 .1 ) .  Since they involve the 
representation (3.3), (3.8) of the steady roll solution, as well as the representation 
(4.2) of the disturbances, the expressions for the matrices are lengthy. Because their 
derivation is straightforward we give only an example: 

J(13) K ~ A V  = - c. apn($~, t  {s$Av * vs$pn + s#pn * V s $ A v ) ) *  
P ,  n 

The linear eigenvalue problem (4.3) for the set of unknown coefficients GAv, and 
CAv with as the eigenvalue is similar to the analogous problem in I governing the 
stability of the roll solution for a horizontal layer. There are, however, a number of 
important differences: the number of terms is nearly doubled because of the presence 
of a component of vorticity normal to the boundaries in the steady solution. As we 
shall show below, these terms alter the stability properties of the convection rolls. 
In addition, there are terms associated with the plane parallel shear flow U which 
by themselves can cause instability. Even though the stability problem given by (4.3) 
has been solved in the case tan y = 0 and in the case where the amplitude of the roll 
solution vanishes, these limiting cases are not sufficient to infer the stability properties 
in the general case. A qualitatively different instability, the wavy instability, occurs 
at finite angles of inclination and finite amplitudes of convection, as will be discussed 
in $5. 

For the numerical solution of (4.3) we neglect, as in the case of the steady solution, 
all equations and coefficients with 1 hl + v > N. To ensure convergence of the expan- 
sion ( 4 . 2 ) ,  N will be increased until the eigenvalue c does not change significantly when 
N is replaced by N + 2 .  Tests with even higher values of N have shown that this 
criterion is suitable to ensure a good approximation of the exact solution (see also 
Denny & Clever 1974). Since interpolation is used to obtain the point at which the 
maximum of the growth rate u as a function of the wavenumber b is zero additional 
approximations enter the determination of the critical Rayleigh numbers. Care was 
taken that the overall uncertainty did not exceed a range of about 2 or 3 yo. Following 
the example of Busse ( 1 9 6 7 ~ )  a considerable simplification of the stability analysis 
was deduced in I from the symmetry of the stability equations. In  the present case 
one of the symmetry properties is lost, and it is no longer possible to separate the 
general set (4.2) of disturbances into four subsets. Because of the symmetry of the 
longitudinal-roll solution it is still possible, however, to separate the disturbances 
into two subsets corresponding to either a symmetric or an antisymmetric dependence 
on the y co-ordinate. For simplicity we refer to these two subsets as the symmetric 
and antisymmetric cases. Hence we rewrite the expansion given in (4.2) (with d = 0) as 

symmetric case, (4.5) 
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where the upper expression in the braces is assumed when h + v is odd and the lower 
expression when h + v is even. The expression for 8 is analogous to that for 4 since the 
two variables have identical symmetry properties. The considerable simplification 
which has been achieved by replacing (4.2) by (4.4) and (4.5) is expressed by the fact 
that the summation over h starts at  either 0 or 1 instead of a t  -m. We note that u 
is still complex in the otherwise real representations (4.4) and (4.5). 

We have introduced the assumption that all physically relevant disturbances 
correspond to d = 0. It was shown in I, in the case y = 0, that instabilities with finite 
values of d are, indeed, of minor importance. Only two types of instability require 
finite values of d :  the Eckhaus instability and the hexagonal instability. The Eckhaus 
instability does not depend on x, the co-ordinate parallel to the rolls. Because the 
x-independent equations do not depend on tan y, it will occur in the same way as in the 
case of a horizontal layer. Since it was shown in I that this instability does not corres- 
pond to a transition to a new form of convection as the Rayleigh number increases 
it has little physical relevance. The hexagonal instability is typical of problems with 
property variations in the z direction, as discussed by Busse (1 967 b ) .  A recent analysis 
of this instability in the case of an internally heated layer is given by Clever ( 1  977). 

The exclusion of the parameter d is welcome because of the large number of other 
parameters in the problem. Although it was found that for the majority of the com- 
putations at  low values of R- R, a truncation level of N = 6 is suscient to yield 
reasonably accurate results, the rank of the stability matrix is 51 even at  this low 
truncation level. To test the accuracy and to extend the calculations to higher Rayleigh 
numbers truncation levels of N = 8 and N = 10 were used. These correspond to 
matrices of ranks 92 and 145, respectively. 

The principal goal of the stability analysis is to determine the Rayleigh number 
R,, for the instability of the longitudinal-roll solution as a function of y, P and the 
wavenumber a. Even for fixed values of these parameters the determination of R,, 
involves a considerable amount of computation since the eigenvalue u with largest 
real part must be determined as a function of the disturbance wavenumber 6 .  After 
this eigenvalue has been calculated for several Rayleigh numbers, selected in such a 
way that the eigenvalue with largest real part crosses zero, the value of R,, is then 
accurately determined by interpolation. Fortunately, the value of R,, for the wavy 
instability is found to be rather insensitive to variations in b in the case of moderate 
angles y (y  5 70°)  since the critical disturbance corresponds to vanishing b .  Hence it 
was possible to get accurate results by choosing a small value of b, say b = 0-1, which 
was actually used for the majority of the computations. In representative cases the 
growth rate u was calculated as a function of b for supercritical as well as subcritical 
Rayleigh numbers. 

Most of the calculations were done for a = a, = 3.117, which is the critical value 
at the onset of longitudinal rolls. However, different values of a are often realized 
experimentally and the mechanism of instability depends on this parameter. For this 
reason the dependence of R,, on a has been investigated for some particular cases. 
The dependence on the parameter P is not extensively represented in the results 
because ofthe limitations imposed by the costs of computations. Two Prandtl numbers, 
P = 0.71 and P = 7.0, corresponding to air and water respectively, were selected as 
representative for the dependence of the wavy instability (see $ 5 )  on the Prandtl 
number and for comparison with experimental results. For low Prandtl numbers 
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( P  5 0*22/cos y for y 5 89") a steady transverse instability precludes the onset of 
longitudinal rolls (except for small y )  whereas for high Prandtl numbers the wavy 
instability occurs only at  large Rayleigh numbers, if it occurs at all, for which the 
computational costs are prohibitive. The two Prandtl numbers selected illustrate the 
wavy instability between these two limits. The dependence of the Rayleigh number 
R,, on the angle y has received special attention, since the layer inclination can be 
most easily varied in experiments. Most of the results will be shown as a function of the 
angle y ,  and the discussion of the instability mechanism will focus on this parameter. 

5. The wavy instability 
The fact that longitudinal rolls represent a secondary solution of the equations for 

an inclined layer heated from below is expressed by the periodic dependence in the 
y direction, which is not reflected in the physical conditions of the problem. For this 
reason an arbitrary translation in the y direction produces a solution with the same 
physical properties as the original solution. A consequence of this translational in- 
variance is the fact that 

represents a solution of the stability equations (4.1) corresponding to g = 0. We 
note that as in (4.1) the scalar functions +, @ and 8 refer to the longitudinal-roll 
solution. The eigenvalue g = 0 does not indicate instability. It is possible, however, 
that small additional physical effects may lead to a positive real part of g. This is in 
fact the basic origin of the wavy instability, a t  least in the parameter range where it 
occurs for small values of b.  

Instability related to the property (5.1) has been discussed in the case of convection 
in a horizontal layer. It was shown theoretically by Busse (1967 a, b )  and experimentally 

(6, J ,  0) = (a, +, a, +, a, 8)  (5.1) 
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by Busse & Whitehead (1971) that an instability of the form (5.1) with an additional 
dependence exp {ibx) for small values of b occurs when the value a of the roll wave- 
number is sufficiently less than the critical value a,. In the inclined convection layer 
an instability of the same kind may occur for all wavenumbers a of the steady solution. 
Hence the instability produces a transition to a different form of convection in this 
case. In this paper we call this the wavy instability because of the characteristic wavy 
(although non-oscillatory) form of the resulting convection pattern. In the paper by 
Busse & Whitehead (1971) the instability was called the zigzag instability because it 
produced convection rolls in a typical herring-bone pattern. 

In  accordance with the above description, the wavy instability is obtained in the 
case of antisymmetric disturbances (4.4). The Rayleigh number R,, for onset of this 
instability is plotted in figures 5 and 6 as a function of tan y for the two different 
Prandtl numbers. Since the transition does not occur in the horizontal case, R,, tends 
to infinity at  a finite va.lue of y which depends on the Prandtl number. A qualitative 
understanding of the dependence of R,, can be obtained from a small amplitude 
expansion of the problem analogous to that used by Schluter, Lortz & Busse (1965) 
and Busse (19673). Using both the amplitude E of longitudinal-roll convection and 
tan y as perturbation parameters we find 

r~ = - b2{tan2 y ( A  - E ~ B )  + E ~ C  + . . .}, (5.2) 
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where terms of higher order in tan y and c have been neglected. I n  addition we have 
used the fact is proportional to  b2 for non-oscillatory disturbances which reduce t o  
(5.1) in the limit of vanishing b. Without proof we note that the symmetry of the 
problem requires that only even powers of both tan y and t: enter relation (5.2). The 
constant A must be positive since all x-dependent disturbances [excluding symmetric 
disturbances (4.4)] of the inclined layer decay at the Rayleigh number R = R, for the 
onset of longitudinal rolls. I n  addition it is known that the instability does not occur 
in the case of a horizontal layer. Hence C must be positive. The fact that the wavy 
instability occurs in an inclined layer suggests that B assumes a positive value. Using 
the approximate relation 

R = R, + B ~ R ( ~ )  + , . . 
for the Rayleigh number as a function of the amplitude B of the longitudinal rolls we 
obtain the expression 

A 

tan2 yA/B(2) 
Btan2y-C 

R,, - R, = (5.3) 

by setting cr equal to zero. The constants A ,  B and C can be calculated by using either 
independent programs or the present program in the limit when tan y and B tend to 
zero. I n  the case of air we find, using the latter approach, 

A/CR(') = 322.8, BIG' = 36.89. (5.4) 

The approximate relationship (5.3) is shown in figure 5 for comparison with the 
numerical results. The simple model appears to describe the transition rather well 
and emphasizes the point that the transition does not exist for angles less than a 
critical value yc, which in the approximate formulation is given by 

yc = arctan (C/B)*. (5.5) 

Because the transition occurs for much higher Rayleigh numbers in the case of water 
the quantitative agreement with the approximate expression (5.3) is not as good as 
in the case of air. It is evident from figure 6, however, that the qualitative dependence 
of R,, is the same. 

For large values of tan y the wavy instability changes character. The change is most 
clearly evident in figure 6, where a point of inflexion in the stability boundary occurs 
for y z 65". While for lower angles the wavy instability is governed by the transla- 
tional mechanism discussed above, the basic shear flow becomes sufficiently strong 
for larger angles to dominate the mechanism of instability. 

The change in character of the wavy instability a t  y z 65" is associated with a 
change in the wavenumber b of the critical disturbance. We have mentioned earlier 
that  for moderate angles of inclination the instability always reaches a positive 
growth rate cr first in the limit of small wavenumbers b.  For large angles y this behaviour 
is changed, as is demonstrated in figure 7. The typical value b of the most unstable 
wave is of order unity in this case. The fact that a finite value of b is observed experi- 
mentally also for low values of y does not contradict the theoretical result. Since the 
growth rate reaches a maximum at  a finite value of b as soon as the critical Rayleigh 
number is exceeded by a small amount it becomes difficult to determine the critical 
value of the wavenumber b .  

For large y we have not performed detailed computations of the function R,, since 
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FIGURE 7. The dependence on the b wavenumber of the growth rate for a water ( P  = 7.0) layer 
at (a) y = 45" and ( b )  y = 75", showing the change in character of the instability a t  large y. The 
wavy instability first emerges as a disturbance with (a) a vanishing or (b )  a finite value of the b 
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FIGURE 8. The dependence of R,, on the a wavenumber at various angles y (given on curves) 
for a water layer ( P  = 7.0). For R less than the values given on the curves (except y = 0) two- 
dimensional longitudinal convection rolls are stable. For y = 0, two-dimensional rolls are unstable 
for R less than the values given by the curve. ---, R, onset of convection rolls. 

the longitudinal rolls are unstable for Rayleigh numbers less than R,, owing to  the 
transverse instability. This instability, which will be discussed in 5 7, represents an 
optimally adjusted mode among all modes generated by the shear instability 
mechanism. 

To demonstrate the dependence of R,, on the wavenumber a of the longitudinal 
rolls detailed calculations have been performed for the case of water. The results 
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FIGURE 9. R,, plotted as a function of the angle of inclination using Hart's Rayleigh number 
R* = R/cos y. To show where large discrepancies between experimental observations and theo- 
retical predictions must be expected the curve D = 1 for the most strongly growing disturbance 
is shown for comparison 8, R,,, experiment (Hart); -, R,,, theory; ---, R, onset of convection 
rolls. 

shown in figure 8 clearly demonstrate the connexion between the wavy instability 
and the zigzag instability which occurs in a horizontal layer. For y = 0 the zigzag 
instability limits the stability range of rolls towards small a. The transition from stable 
rolls to zigzagging rolls occurs with decreasing Rayleigh number at a given value of a. 
At the critical angle yc M 17" the stability boundary 'tips over' and a transition with 
increasing Rayleigh number becomes possible. For larger angles the wavy instability 
depends little on the wavenumber a. As the shear-flow mechanism of instability 
becomes dominant, the dependence on a is expected to vanish. 

The most detailed experimental observations of the onset of the wavy instability 
have been made by Hart (197 1 a, b ) .  The photographs in his paper clearly demonstrate 
the bending of the rolls as the instability sets in. Because of the finite aspect ratio of 
the experimental apparatus and the difficulty in observing small disturbances, close 
quantitative agreement between observations and theory cannot be expected. Figure 
9, however, does indicate reasonable correspondence. This figure has been drawn in 
terms of the Rayleigh number R* = R/cos y, which is preferred by experimentalists, 
since the definition is the same as in the case of a horizontal layer. To emphasize the 
difficulty of determining the onset of instability in an experiment with slowly in- 
creasing Rayleigh number we have drawn the curve for u = 1 in addition to the curve 
u = 0 of marginal stability. Since only disturbances growing at  a finite rate are 
observed experimentally it is not surprising that the experimental observations of 
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FIGURE 10. The Prandtl number dependence of the wavy instability. The 
lower and upper curves are for y = 60" and 30", respectively. 

the onset of instability deviate from the theoretical predictions wherever the growth 
rate of the'disturbance is relatively low. Since the growth rate of disturbances increases 
relatively slowly with R - R,, a t  angles between 20" and about 45" according to 
figure 9, discrepancies between the observed onset of instability and the theoretical 
neutral curve must be expected in that region. Indeed, since the Rayleigh number 
in Hart's (1971b)  experiment increases by about 1500 within a thermal time scale 
and since disturbances usually require a growth time of 2 or 3 time units to become 
visible, the observational data are in reasonable agreement with the theoretical 
predictions if the growth-rate effect is taken into account. Hart's observations of the 
wavelength of the wavy rolls are consistent with this interpretation and the theoretical 
values for the b wavenumber of t,he most strongly growing disturbance, since this b 
wavenumber increases significantly a t  slightly supercritical Rayleigh numbers 
according to  figures 7 (a) and (b ) .  

Hart ( 1  97 1 b )  suggested an interpretation of his experimentat observations in terms 
of an instability mechanism based on the buoyancy component parallel to  the layer. 
While his estimates seem to indicate reasonable agreement with experimental observa- 
tions in the case of water, large discrepancies must be expected for other Prandtl 
numbers. In  contrast to Hart's Prandtl-number-independent mechanism, the rigorous 
theoretical results clearly demonstrate a strong Prandtl-number dependence of RII, 
which indicates that the instability originates from the momentum-advection terms 
of the equation of motion. To establish this point additional calculations have been 
done for the case P = 16 for two angles of inclination. The results shown in figure 10 
indicate a nearly quadratic growth of R,, with Prandtl number, which is the expected 
dependence for t'he action of the momentum-advection terms. 
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6. The oscillatory instability 
I n  contrast to the wavy instability the oscillatory instability causes a transition 

(for a = 3.1 17)  in the case of a horizontal layer. At the transition Rayleigh number 
RIII, convection in the form of steady rolls is transformed into oscillatory rolls, a t  
least in the case of Prandtl numbers of the order of 5 or less. As was emphasized in the 
first theory of this transition by Busse (1  972) ,  the growing oscillatory disturbances 
can be understood as slight modifications of the translational disturbance (5.1) similar 
to the wavy instability. In  contrast to the latter, a mean component of vertical vorticity 
is associated with the oscillatory disturbances in the horizontal layer. I n  the case of 
the inclined layer this distinction is less pronounced since the basic longitudinal-roll 
solution is already associated with a component of normal vorticity, which increases 
in proportion to tan y according to relation (3 .2) .  The disturbances still show a con- 
siderable difference in the coefficient Eobl of $, however, depending on whether or not 
the imaginary part of CT vanishes. 

It is not always easy to distinguish experimentally the oscillatory from the wavy 
instability and observations are sometimes ambiguous since the imaginary part of CT 
may be rather small. Since both instabilities belong to the class of antisymmetric 
disturbances, they are mainly distinguished theoretically by the fact that the eigen- 
value CT is complex in the case of the oscillatory instability. 

The Rayleigh number R,,, - R, for the onset of oscillations is roughly proportional 
to the square of the Prandtl number. The same fact holds approximately for R,, - R,, 
which indicates that both instabilities are caused by the momentum-advection terms 
in the equation of motion. As shown in figure 5 ,  R,,, decays as tan y increases. Thus 
the oscillatory instability parallels the behaviour of the wavy instability with the 
exception of the dependence on the wavenumber b .  The real part of the growth rate 
always reaches positive values a t  a finite value of b, as was shown in I in the case of 
the horizontal layer. 

Since R,,, exceeds R,, for most values of y the oscillatory instability is physically 
realized only for either very small angIes of inclination or possibly for values of the 
Prandtl number greater than about 10 (Korpela, Goziim & Chandakant 1973) .  The 
experimental observations by Hart (1971 a )  indicate, however, that the wavy rolls 
become oscillatory, i.e. travelling waves, a t  Rayleigh numbers not far from RTII. Thus 
the stability analysis for oscillatory disturbances appears to be physically relevant 
even though it  is not applicable in a rigorous sense for Rayleigh numbers exceeding 

The dependence of R,,, on the wavenumber a of the longitudinal rolls has not been 
calculated. The 01 dependence has been calculated in I for a horizontal convection 
layer with P = 0.71. Since the oscillatory instability normally occurs a t  this Prandtl 
number only for y < 10" it can be expected that the a dependence is similar to  the 
case y = 0. 

RII. 

7. The transverse instability 
Both the wavy and the oscillatory instability belong to the antisymmetric class of 

disturbances (4.4). Symmetric instabilities of the form (4.5) appear to  be of lesser 
importance for convection in an inclined layer for angles a t  which the heating is from 



Longitudinal convection rolls in an inclined layer 125 

below. I n  the case of the horizontal layer examples of symmetric instabilities are the 
cross-roll instability and the knot instability, which lead to bimodal convection and 
spoke rolls, respectively, a t  Rayleigh numbers of the order of 2 x lo4 and higher. The 
transition to bimodal convection has been discussed in I. The knot instability differs 
essentially only by its smaller b wavenumber and is discussed in detail in a forthcoming 
paper (Busse & Clever 1977). The latter instability limits the stability region of rolls 
for Prandtl numbers P in the range 1 5 P 5 10 and is therefore of particular interest 
in the present analysis. Both instabilities tend to introduce rolls at right angles to the 
given longitudinal rolls and thus become inhibited by the shear flow as the angle 
increases as is shown in figure 6. The stabilizing effect of the shear is particularly well 
demonstrated in the high Prandtl number experiments by Richter & Whitehead 
(1974) and Richter & Parsons (1975), in which the shear was introduced through 
relative motion of the upper boundary. Stable longitudinal rolls are found in these 
experiments for R = 5 x lo5 at a Prandtl number of lo4. 

Besides its stabilizing effect, the shear flow also provides a destabilizing action. 
The cubic shear-flow profile is characterized by an inflexion point and is therefore 
subject to instability according to Rayleigh’s criterion. Squire’s (1933) theorem states 
that in the absence of temperature gradients the instability first appears in the form 
of transverse disturbances which are independent of the y co-ordinate. I n  the case of 
the inclined layer heated from below Gershuni & Zhukovitskii (1969) have shown by 
an extension of Squire’s theorem that the instability of the basic state occurs in the 
form of y-independent disturbances unless convection in the form of x-independent 
longitudinal rolls sets in a t  a lower Rayleigh number. 

The goal of our analysis in this connexion is to investigate the modification of the 
transverse instability when longitudinal convection rolls are present. Obviously the 
transverse disturbances belong to the symmetric case (4.5) since the function 6 must 
include the y-independent component. From the analysis of Gershuni & Zhukovitskii 
( 1969) it is evident, however, that nearly transverse disturbances show positive growth 
rates at Rayleigh numbers only slightly above that for the onset of the transverse 
instability. Nearly transverse disturbances can be described, however, both by the 
symmetric and by t h e  antisymmetric case. Indeed, in discussing the wavy instability 
and the oscillatory instability we have already pointed out that the influence of the 
shear mechanism of instability becomes increasingly pronounced for large angles of 
inclination. Since growth rat,es of nearly transverse symmetric disturbances are close 
to the growth rate of the transverse instability the numerical computations show 
unsatisfactory convergence unless the truncation parameter N is increased to a rather 
high level. In figures 2 and 3 the onset of the transverse instability in the absence of 
longitudinal rolls is shown by a dashed line. The presence of convection rolls has a 
stabilizing influence, as shown by the solid line in figure 5. This line was obtained 
using N = 15 as the truncation parameter, with a modification of the truncation 
scheme whereby modes with 31hl+ v > N were neglected in the computations. The 
lack of convergence and the prohibitive expense of computations a t  higher values of 
N have prevented us from extending the solid line to higher Rayleigh numbers. 

In  the range of the Prandtl numbers including those of air and water the transverse 
instability sets in as a monotonically growing disturbance. Hence our calculations have 
exhibited eigenvalues with a vanishing imaginary part. It should be mentioned, how- 
ever, that at  higher Prandtl numbers, of the order of 10 and larger, as y-+&n an 
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oscillatory transverse instability sets in before the onset of the steady transverse 
instability. The corresponding analysis in the case without convection is given by 
Gershuni & Zhukovitskii (1969) and Korpela et al. (1973). 

8. Concluding remarks 
The transition from longitudinal to wavy convection rolls is a common feature of 

many cases of roll-like motions in the presence of mean shear. The various forms of 
wavy Taylor vortices are probably the best known examples (Coles 1965; Snyder 
1970). Observations by BBnard & Avsec (1938) of convection in the presence of plane 
Couette flow show wavy rolls similar to those observed by Hart (1971a, b )  in the 
inclined convection layer. There can be little doubt that the basic mechanism of 
instability is essentially the same even though the experimental contexts differ widely. 
The translational invariance of the longitudinal convection rolls and the presence of 
a component of vorticity normal to the boundary give rise to  the wavy instability 
(or to the oscillatory instability, depending on the parameter range) when the Reynolds 
number of the mean shear is sufficiently small. The instability is modified and char- 
acterized by a higher value of the longitudinal wavenumber b when the Reynolds 
number of the mean shear becomes comparable to that for which transverse instability 
would occur in the absence of the roll component of motion. In  this region the usual 
transverse instability competes with the wavy instability. Unfortunately Hart’s 
(1971 a, b )  experiments do not extend to high enough angles of inclination to give an 
experimental determination of the angle of transition between the two types of 
instability. 

I n  the case of the Taylor vortex the onset of the various instabilities is modified 
by the effects of the Coriolis force and the curvature. The theoretical analysis by 
Davey, DiPrima & Stuart (1968) is restricted to small amplitudes of the Taylor 
vortex and does not consider all possible disturbances. The mechanism for the wavy 
instability, however, is similar to that considered in this paper. An extension of the 
analysis of Davey et al. (1968) along the lines of the present work is planned in order 
to resolve the remaining discrepancies between theory and experiment pointed out 
by Snyder (1970). 
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